

ASX ANNOUNCEMENT

2 February 2024

Black Mountain Drilling Results: First significant lithium intersections in Wyoming; and Base Metals (Cu, Zn and Pb) potential identified

HIGHLIGHTS:

- Black Mountain maiden drill program delivers strong initial hard rock lithium results with multiple mineralised lithium intersections from first three (3) holes
- First three (3) holes all intersected high-grade spodumene mineralisation confirming the potential of the Black Mountain LCT pegmatite swarms
- Notable results from first three (3) holes include:
 - BMDDH23_01 15.48m @ 1.12% Li₂O and 79ppm Ta₂O₅ from 2.74m, including 4.27m
 @ 2.46% Li₂O and 128 ppm Ta₂O₅ from 9.94m
 - BMDDH23_02 14.33m @ 0.84% Li₂O and 61ppm Ta₂O₅ from 1.83m, including 2.29m
 @ 3.09% Li₂O and 138ppm Ta₂O₅ from 10.67m
 - BMDDH23_03 18.81m @ 0.85% Li₂O and 98ppm Ta_2O_5 from 45.26m, including 5.79m @ 1.08% Li₂O and 105ppm Ta_2O_5 from 47.55m
- High-grade potential with individual grades downhole of up to 3.79% Li_2O and 230ppm Ta_2O_5
- Drilling continues with eight (8) holes having been completed to date, assay results for the subsequent five (5) holes are pending and expected to be announced by April 2024
- BDDDH23_01 intersected a zone of stockwork vein and disseminated pyrite-pyrrhotite mineralisation over an interval of approximately 100m within the biotite schist
- The Company is optimistic it may have intersected the peripheral portion of a potentially larger base metal mineral system, with selected intervals grading up to 0.6% (6,012ppm) Cu, 1.0% (9,931ppm) Zn and 15.4% (154,412ppm) Pb
- The Company plans to extend the soil sampling program and run preliminary IP lines over the base metals anomaly in Q3 2024

Chariot Corporation Limited ("**Chariot**" or the "**Company**") is pleased to advise that it has intersected significant zones of strong lithium-tantalum mineralisation in the first three (3) holes ("**First Three Holes**") of the maiden drill program at the Black Mountain Project ("**Black Mountain**"), in Wyoming, U.S.A.

These drill results confirm the potential of the Black Mountain **li**thium **c**aesium **t**antalum ("**LCT**") pegmatite swarms with the assays returning individual lithium and tantalum values of up to 3.79% Li₂O (BMDDH23_01-0021) and 230ppm Ta₂O₅ (BMDDH23_01-0033).

This is the first hard rock lithium discovery, through drilling, in Wyoming, U.S.A.

Wyoming Lithium Pty Ltd ("**WLPL**") and Panther Lithium Corporation ("**PLC"**) co-founder¹, Dr Edward Max Baker² commented:

"We've got stunning initial results in the midst of the North American winter. The targeted hard rock lithium system has been intersected in multiple holes, but we need to come back in the North American summer for a 5,000 – 10,000m drill program to get a better handle of the resource potential. The base-metals sulfide mineralisation is also very promising and indicates the potential for base metals and/or gold mineralisation, separate from the lithium mineralisation."

First Three Holes: Drill Results

The First Three Holes (being drill holes BMDDH23_01 to BMDDH23_03) have been completed and assayed with the results summarised in Table 1 (see also Figure 1). A total of eight (8) holes have been drilled to date. The assay results for the subsequent five (5) drill holes are pending and expected to be announced by the end of April 2024.

The drill intercepts reported from the First Three Holes confirm the lithium potential of the Black Mountain LCT pegmatites (see Table 1), as indicated by the surface rock chip sampling results which were disclosed in the Company's initial public offering prospectus and the Company's announcement dated 9 November 2023.

Drill Hole	From (m)	To (m)	interval (m)	Li₂O%	Ta₂O₅ ppm
BMDDH23_01	2.74	18.23	15.48 (14*)	1.12	78.8
including	4.15	5.49	1.34	1.91	68.0
and	9.94	14.2	4.27	2.46	128.4
BMDDH23_02	1.83	16.15	14.33 (13*)	0.84	61.3
including	10.67	12.95	2.29	3.09	137.7
BMDDH23_03 Includes 2.29m of core loss between 45.26m and 47.55m	45.26	62.73	18.81 (8*)	0.85	98.4
including	47.55	53.34	5.79	1.08	104.9

 Table 1: Assay results from the first three drill holes at Black Mountain. Intervals reported are downhole/apparent widths which are greater than true widths.
 * Denotes estimated true width.

¹ Chariot holds a 93.9% interest in WLPL. PLC is a wholly owned subsidiary of WLPL.

² Dr Baker holds 7,926,860 ordinary shares in Chariot (equal to a 5.3% interest in the undiluted shares on issue of Chariot). Dr Baker is also engaged as a consultant by Chariot.

The visual inspection of the drill cores indicates that the high-grade lithium values are from intervals containing spodumene mineralisation, with no other lithium bearing mineral phases being visually identified to date.

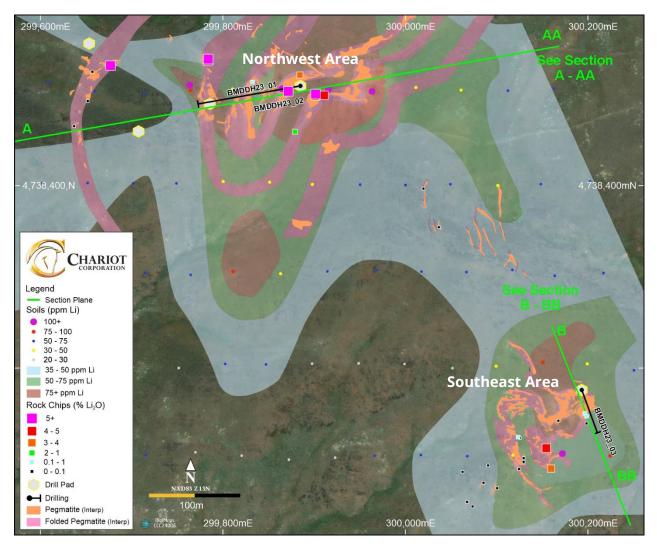


Figure 1: Plan View of the Black Mountain Project, showing the pegmatite outcrops (dark red) and interpreted folded geometry (in light red) along with the Northwest and Southeast Cross-Section Lines and Drill Collars. The rock chip and soil geochemistry results are also shown. Refer to the Prospectus for the complete set of rock chip assay results¹.

BMDDH23_01 and BMDDH23_02 were drilled from Pad 1 in the central Northwest swarm area ("**Northwest Area**"). BMDDH-23-01 hole was drilled to a depth of 177m at an azimuth of 260 degrees and a dip of -50 degrees (see Figure 2, Figure 3 and Figure 4 for selected photos of Drill Core). BMDDH23_02 hole was drilled to a total depth of 42m with the same azimuth BMDDH-23-01, but with a dip of -65 degrees (see Figure 1).

BMDDH23_01 and BMDDH23_02 both intersected the same pegmatite (see Figure 5).

¹ The Prospectus can be downloaded from the Company website: www.chariotcorporation.com

Figure 2: Pegmatite intersection in BMDDH23_01 from 10.5m (34.5ft.) to 13.7m (45ft.) showing some of the spodumene mineralisation.

Figure 3: Drill Core sample from BMDDH23_01 – from 10.6m

Figure 4: Pegmatite intersection in BMDDH23_02 from 9.6m (31.5ft.) to 14.5m (47.5ft.).

The BMDDH23_01 and BMDDH23_02 Drill Cores indicate that the Northwest Area comprise steeply dipping limbs of a tightly folded package of dikes, where the fold is now interpreted to be more open than initial anticipated before drilling, whereby the dikes to the west of drill pad 1 are expected to dip westward at a dip approximately parallel to BMDDH23_01 (See Figure 5).

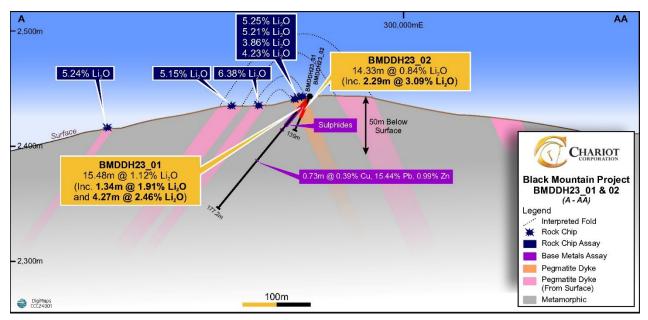


Figure 5: A – AA cross section (see Figure 1) through the Northwest Area showing BMDDH23_01 and BMDDH23_02 drill traces with the intersected pegmatite shown in red.

BMDDH23_03 was drilled in the central southeast swarm area (the "**Southeast Area**") with an azimuth of 160° and dip of 50° to a depth of 78m. The pegmatite dike swarms in the Southeast Area comprise a complex fold-hinge, which based on the location of the intercept of pegmatite in BMDDH23_03 (see Figure 6) appears to dip moderately steeply to the southeast (see Figure 7).

Figure 6: Pegmatite intersection in BMDDH23_03 from 45.3m (161ft.) to 63.4m (208ft.).

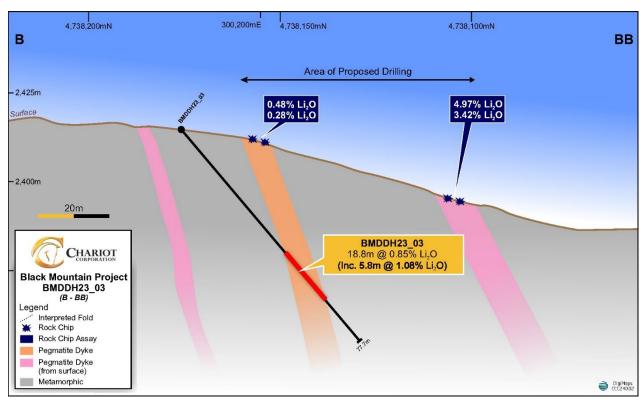


Figure 7: B-BB cross section through the SouthEast Area showing BMDDH23_03 drill trace with the intersected pegmatite shown in red.

Independent Technical Guidance and Review of Exploration Results

ERM Australia Consultants Pty Ltd (previously CSA Global), ERM Sustainable Mining Services ("**CSA Global**"), have provided technical guidance for the development of the Black Mountain exploration plan and completed an independent review of the data, geological interpretations and exploration results pertaining to this announcement. CSA Global are satisfied these scientific and technical disclosures were appropriate to support the reporting of these Exploration Results.

Phase 1 Drill Program

The Phase 1 maiden drilling program ("**Phase 1 Drill Program**") consisting of 10-15 holes was designed to test under outcropping pegmatite dikes swarms with anomalous Li rock chip values to determine the geometry of the dikes and to confirm the hard rock lithium potential ahead of a comprehensive resource drill-out in Q3 2024.

Major Drilling Group International Inc. ("**Major Drilling**") has been contracted to drill oriented triple tube HQ sized diamond drill core ("**Drill Core**") using a Boart Longyear LF90 Surface Diamond Core Drill Rig (the "**Drill Rig**") (see Figure 8). Drill Core from Black Mountain is transported to Chariot's core handling and storage facility in Jeffrey City, Wyoming, where each Drill Core is photographed, logged, and measured for density and recovery (see Figure 9). Drill Core samples are being assayed by American Assay Labs in Reno, Nevada.

Figure 8: Drill Rig at Black Mountain.

Figure 9: Chariot Senior Project Geologist, Willis Blakeslee, inspecting Drill Core.

Exploration permitting in Wyoming on federal land is a two-step process. Approval from United States Bureau of Land Management in Wyoming ("**BLM**") is required. At 'Notice' of Intent ("**NOI**") levels of exploration (a basic level), a maximum disturbance of only five (5) acres is allowed and, if disturbance is likely to exceed this level, a more thorough Exploration Plan of Operations ("**EPO**") must be submitted. An EPO, which typically requires biological and cultural/archaeological studies, can take 6-12 months to complete, although there is then no restriction on the size of the disturbance.

The Phase 1 Program was limited to the currently permitted seven (7) drill pads due to the 5-acre limit on disturbance under the NOI, which applies to both access roads and the drill pads.

Chariot plans to apply for an EPO to increase the area of disturbance from 5-acres under the NOI to up to 2,500 acres for the Phase 2 Resource Drill Program commencing in Q3 2024.

The Phase 1 Drill Program was limited to testing the two central pegmatite swarms (of the four pegmatite swarms identified at Black Mountain), being the Northwest Area and the Southeast Area.

Base Metal Mineralisation Identified in the First Drill Hole (BMDDH23_01)

The upper section of BMDDH23_01 intersected pyrite-pyrrhotite mineralisation, occurring as veinlets and dissemination within the biotite schist over an interval of approximately 100m. At this early stage, only several select intervals of this mineralisation were sampled and assayed (see Table 2).

Based on the location of this drill hole relative to an 800m long by 150m wide zone of anomalous zincin-soils, the Company is optimistic that it has intersected the peripheral portion of a potentially larger base metal mineral system (see Figure 10). The zinc and lead anomalies are situated on the contact between metabasalt to the south and metasediments to the north coincident with a two-meter-wide zone of black massive chert outcrops along the southern margin of the soil anomaly. Based on the anomalous drill intercepts, the geological setting and the extent of the zinc and lead soil anomaly, the Company plans to further investigate this base metal mineralisation by extending the soil sampling program and conducting a preliminary induced polarisation survey ("**IP**") lines across the anomaly in Q3 2024.

Hole ID	From	То	Interval	Cu	Pb	S	Zn
	(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	(ppm)
BMDDH23_01	23.4	23.8	0.3	6,012	0	150,328	1,294
BMDDH23_01	23.8	25	1.2	660	0	120,231	1,991
BMDDH23_01	32.5	32.9	0.3	1,258	0	129,887	3,958
BMDDH23_01	36.8	37.6	0.9	610	79	80,607	3,540
BMDDH23_01	39.2	39.7	0.5	479	46	71,688	3,829
BMDDH23_01	41.1	41.8	0.7	360	18	36,406	1,292
BMDDH23_01	42.7	43.1	0.4	777	34	110,999	3,778
BMDDH23_01	43.1	43.4	0.3	769	33	88,317	3,326
BMDDH23_01	44.9	45.5	0.6	671	30	86,750	3,640
BMDDH23_01	45.5	45.9	0.4	1,214	48	114,744	5,103
BMDDH23_01	47.2	47.5	0.3	1,222	76	119,702	3,017
BMDDH23_01	64	64.9	0.9	1,228	345	95,799	177
BMDDH23_01 ^(a)	121	121.7	0.7	3,891	154,412ª	28,970	9,931
Typical Assay Values in a	areas withou	it	•				
Pyrite Veins							
Pegmatites				<30	<30	<200	<50
Schist				<500	<30	<1000	<200

Table 2: Intervals of vein and disseminated pyrite, pyrrhotite mineralisation from BMDDH23_01 showing Zn and Pb values several times higher than what appears to be background in this area. Note (a): Sample sent for re-assay due to exceptionally high Pb values. Refer to Appendix 3.

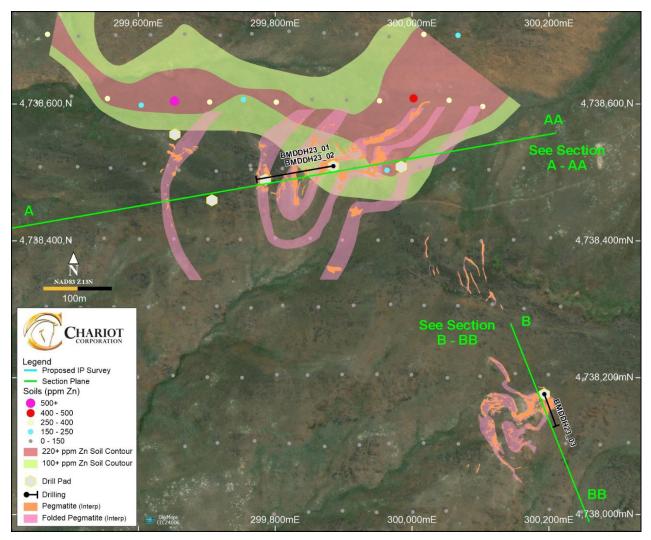


Figure 10: Zone of anomalous Zinc in soils to the north of the pyrite-pyrrhotite mineralisation intersected in BMDDH23_01 (see Table 2) shown in relation to the outcropping pegmatites with soil sample locations showing Zn in ppm. Refer to Appendix 4 for the complete set of soil geochemistry results.

2024 Black Mountain Exploration Plans

The Phase 1 Program at Black Mountain is scheduled to continue through until 1 March 2024, with the objective of determining the three-dimensional shape and near-surface grades, down to 100m, within the three major pegmatite dike zones as shown in Figure 1 and Figure 10. In addition to the eight (8) holes already drilled, another seven holes are planned for the remainder of the Phase 1 Program, which will conclude on 1 March 2024.

This information will be used to design a more extensive 5,000 to 10,000m initial resource definition drill program expected to commence in Q3 2024 (the **"Phase 2 (Resource Drilling) Program**").

Phase 2 (Resource Drilling) Program to Commence in Q3 2024

In anticipation of the Phase 2 Resource Drill Program, the initial focus will consist of detailed re-logging of the Phase 1 Program drill core along with a detailed petrographic study of the mineralisation and selection and submittal of samples for initial metallurgical testing. At the same time, the existing rock

chip and soil sampling program will be extended to the north and east to close off the open lithium and base metal anomalies.

In addition, the Company plans to run a preliminary IP/Resistivity survey over the area of anomalous Zn-Pb soil geochemistry to assist in siting several holes to test the nature of this base metal mineralisation in Q3-Q4 2024 (see Figure 11).

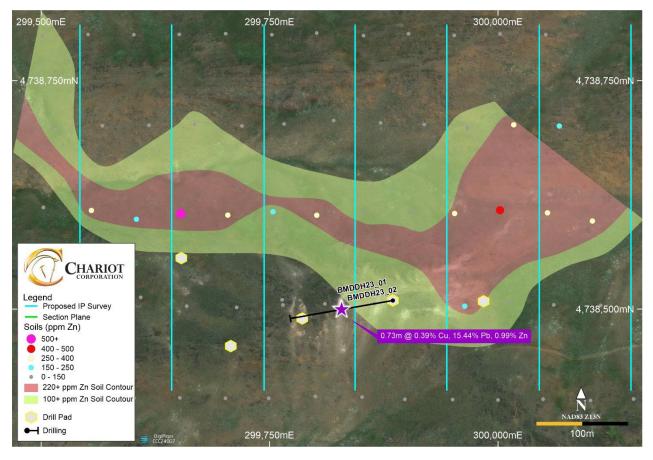


Figure 11: IP/Resistivity survey over anomalous Zn-Pb soil geochemistry.

The Company is currently in the process of lodging an application for an EPO (to drill) in order to expand the area of disturbance and increase the number of drill pads in preparation for a maiden resource drill-out. The Phase 2 (Resource Drill) Program is expected to commence in the North American summer in Q3 2024 or when the EPO is approved by the BLM. Refer to Figure 12 for an indicative exploration timeline for Black Mountain.

Black Mountain	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
Phase 1 Winter Drilling Program									
Relog Phase 1 Core / Petrographic Study									
Phase 1 Metallurgical Testing/ Study									
Additional Rock Chip and Soil Geochemistry Survey									
Phase 2 (Resource Drilling) Program									
IP/Resistivity Program									
Permitting - EPO									

Figure 12: Indicative Black Mountain exploration timeline¹

Authorised on behalf of the Board of Directors.

Shanthar Pathmanathan Managing Director Chariot Corporation Ltd

¹ The above timeline is indicative only and subject to change based on factor within and outside of the Company's control.

Competent Person Statement - Exploration Results

Information in this announcement that relates to exploration results is based on information compiled by Dr E Max Baker who is a Geological Consultant to Chariot. Dr Baker is a Fellow of The Australian Institute of Mining and Metallurgy and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking, to qualify as Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Baker consents to the inclusion in this announcement of the information pertaining to exploration results in the form and context in which it appears.

Dr Baker holds 7,926,860 ordinary shares in Chariot (equal to a 5.3% interest in the undiluted shares on issue of Chariot). Dr Baker is also engaged as a consultant by Chariot.

Important Notice

Statements in this announcement are made only as of the date of this announcement unless otherwise stated and the information in this announcement remains subject to change without notice.

To the maximum extent permitted by law, neither Chariot nor any of its affiliates, related bodies corporate, their respective officers, directors, employees, advisors and agents or any other person accepts any liability as to or in relation to the accuracy or completeness of the information, statements, opinions or matters (express or implied) arising out of, contained in or derived from this announcement or any omission from this announcement or of any other written or oral information or opinions provided now or in the future to any person.

This announcement may contain some references to forecasts, estimates, assumptions and other forward-looking statements. Although the Company believes that its expectations, estimates and projected outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved.

Cautionary Statement - Visual Estimates

This announcement contains references to visual results and visual estimates of mineralisation. The Company draws attention to uncertainty in reporting visual results. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

About Chariot

Chariot Corporation Limited is a mineral exploration company focused on discovering and developing high-grade and near surface lithium opportunities in the United States. Chariot has twelve (12) lithium projects, including two core projects (the "**Core Projects**") and a number of exploration pipeline projects which Chariot majority owns and operates. In addition, Chariot holds interests in a number of projects which have either been sold or conditionally divested through option agreements to publicly-listed companies (the "**Divested Projects**").

The Core Projects include Chariot's flagship Black Mountain Project (which is prospective for hard rock lithium) in Wyoming, USA and the Resurgent Project (which is prospective for claystone lithium) in Nevada and Oregon, USA. Initial survey results from the Core Projects indicate high-grade lithium mineralisation at surface.

Chariot holds an interest in six exploration pipeline projects located in Wyoming, USA, including, the Copper Mountain Project, the South Pass Project and four other hard rock lithium projects.

Chariot holds an interest in the Lida and Amargosa projects in Nevada, USA which are prospective for claystone hosted lithium.

Chariot holds an interest in a hard rock lithium project in Zimbabwe which is prospective for spodumene bearing pegmatites and an early-stage hard rock lithium exploration project in Western Australia.

Each of the Divested Projects is operated or explored by Chariot's publicly-listed counterparty under the relevant sale or option agreement and, depending upon the particular transaction, may generate additional revenues for Chariot dependent on the counterparty's exploration success and financial wherewithal, the achievement of prescribed milestones, the mere effluxion of time or the production of saleable minerals payable under a net smelter royalty.

EAST (m)	NORTH (m)	RL (mASL)	DDH No	Azimuth	Dip	Depth (m)	Assay Status
299884.9	4738509.2	2415.5	BMDDH23_01	260	-50	177.2	Assayed
299884.9	4738509.2	2415.5	BMDDH23_02	260	-65	42.4	Assayed
300193.2	4738176.0	2414.5	BMDDH23_03	160	-50	77.7	Assayed
300193.2	4738176.0	2414.5	BMDDH23_05	225	-45	158.2	Assays Pending
300193.2	4738176.0	2414.5	BMDDH23_06	225	-70	126.6	Assays Pending
300193.2	4738176.0	2414.5	BMDDH23_04	255	-50	69.5	Assays Pending
299785.7	4738489.5	2405.7	BMDDH23_09	290	-65	130	Assays Pending
299653.4	4738555.6	2365.0	BMDDH23_11	135	-40	200	Assays Pending

Appendix 1 – Drill Collar Table¹

¹ All coordinates are in NAD83 Z13N

Appendix 2 – Drill Assay Data

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Pb (ppm)	S (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_01	0.0	1.2	1.2	34	26902	589	<lod< td=""><td>257</td><td>35.3</td><td>95</td></lod<>	257	35.3	95
BMDDH23_01	1.2	2.4	1.2	27	16217	134	<lod< td=""><td>476</td><td>66.7</td><td>100</td></lod<>	476	66.7	100
BMDDH23_01	2.4	2.7	0.3	<lod< td=""><td>4456</td><td>189</td><td><lod< td=""><td>258</td><td>19.4</td><td>24</td></lod<></td></lod<>	4456	189	<lod< td=""><td>258</td><td>19.4</td><td>24</td></lod<>	258	19.4	24
BMDDH23_01	2.7	3.2	0.5	<lod< td=""><td>20995</td><td>1323</td><td><lod< td=""><td>249</td><td>37.1</td><td>40</td></lod<></td></lod<>	20995	1323	<lod< td=""><td>249</td><td>37.1</td><td>40</td></lod<>	249	37.1	40
BMDDH23_01	3.2	4.0	0.7	<lod< td=""><td>6790</td><td>3551</td><td><lod< td=""><td><lod< td=""><td>41</td><td>51</td></lod<></td></lod<></td></lod<>	6790	3551	<lod< td=""><td><lod< td=""><td>41</td><td>51</td></lod<></td></lod<>	<lod< td=""><td>41</td><td>51</td></lod<>	41	51
BMDDH23_01	4.0	4.1	0.2	9	5225	148	<lod< td=""><td><lod< td=""><td>42.1</td><td>43</td></lod<></td></lod<>	<lod< td=""><td>42.1</td><td>43</td></lod<>	42.1	43
BMDDH23_01	4.1	4.7	0.5	<lod< td=""><td>6303</td><td>7256</td><td><lod< td=""><td><lod< td=""><td>41.3</td><td>23</td></lod<></td></lod<></td></lod<>	6303	7256	<lod< td=""><td><lod< td=""><td>41.3</td><td>23</td></lod<></td></lod<>	<lod< td=""><td>41.3</td><td>23</td></lod<>	41.3	23
BMDDH23_01	4.7	5.5	0.8	<lod< td=""><td>7193</td><td>9969</td><td><lod< td=""><td><lod< td=""><td>65.6</td><td>34</td></lod<></td></lod<></td></lod<>	7193	9969	<lod< td=""><td><lod< td=""><td>65.6</td><td>34</td></lod<></td></lod<>	<lod< td=""><td>65.6</td><td>34</td></lod<>	65.6	34
BMDDH23_01	5.5	5.9	0.4	<lod< td=""><td>6229</td><td>3146</td><td><lod< td=""><td><lod< td=""><td>50</td><td>40</td></lod<></td></lod<></td></lod<>	6229	3146	<lod< td=""><td><lod< td=""><td>50</td><td>40</td></lod<></td></lod<>	<lod< td=""><td>50</td><td>40</td></lod<>	50	40
BMDDH23_01	5.9	6.7	0.8	531	57694	355	<lod< td=""><td>1712</td><td>9.1</td><td>119</td></lod<>	1712	9.1	119
BMDDH23_01	6.7	7.8	1.1	162	47846	200	<lod< td=""><td>206</td><td>10.8</td><td>91</td></lod<>	206	10.8	91
BMDDH23_01	7.8	9.5	1.7	204	86144	885	<lod< td=""><td>268</td><td>2.1</td><td>211</td></lod<>	268	2.1	211
BMDDH23_01	9.5	9.9	0.4	34	88335	1565	<lod< td=""><td><lod< td=""><td>1.2</td><td>142</td></lod<></td></lod<>	<lod< td=""><td>1.2</td><td>142</td></lod<>	1.2	142
BMDDH23_01	9.9	10.5	0.6	<lod< td=""><td>6080</td><td>7497</td><td><lod< td=""><td><lod< td=""><td>76.5</td><td>18</td></lod<></td></lod<></td></lod<>	6080	7497	<lod< td=""><td><lod< td=""><td>76.5</td><td>18</td></lod<></td></lod<>	<lod< td=""><td>76.5</td><td>18</td></lod<>	76.5	18
BMDDH23_01	10.5	11.0	0.5	<lod< td=""><td>8447</td><td>14186</td><td><lod< td=""><td>238</td><td>88.3</td><td>33</td></lod<></td></lod<>	8447	14186	<lod< td=""><td>238</td><td>88.3</td><td>33</td></lod<>	238	88.3	33
BMDDH23_01	11.0	12.0	1.0	<lod< td=""><td>7225</td><td>7555</td><td><lod< td=""><td>254</td><td>92.2</td><td>58</td></lod<></td></lod<>	7225	7555	<lod< td=""><td>254</td><td>92.2</td><td>58</td></lod<>	254	92.2	58
BMDDH23_01	12.0	12.7	0.7	<lod< td=""><td>6806</td><td>9582</td><td><lod< td=""><td><lod< td=""><td>168.2</td><td>39</td></lod<></td></lod<></td></lod<>	6806	9582	<lod< td=""><td><lod< td=""><td>168.2</td><td>39</td></lod<></td></lod<>	<lod< td=""><td>168.2</td><td>39</td></lod<>	168.2	39
BMDDH23_01	12.7	13.1	0.4	<lod< td=""><td>9184</td><td>17383</td><td><lod< td=""><td><lod< td=""><td>88.8</td><td>45</td></lod<></td></lod<></td></lod<>	9184	17383	<lod< td=""><td><lod< td=""><td>88.8</td><td>45</td></lod<></td></lod<>	<lod< td=""><td>88.8</td><td>45</td></lod<>	88.8	45
BMDDH23_01	13.1	13.7	0.6	<lod< td=""><td>9397</td><td>17601</td><td><lod< td=""><td><lod< td=""><td>128.2</td><td>29</td></lod<></td></lod<></td></lod<>	9397	17601	<lod< td=""><td><lod< td=""><td>128.2</td><td>29</td></lod<></td></lod<>	<lod< td=""><td>128.2</td><td>29</td></lod<>	128.2	29
BMDDH23_01	13.7	14.2	0.5	<lod< td=""><td>7039</td><td>11153</td><td><lod< td=""><td><lod< td=""><td>81.3</td><td>44</td></lod<></td></lod<></td></lod<>	7039	11153	<lod< td=""><td><lod< td=""><td>81.3</td><td>44</td></lod<></td></lod<>	<lod< td=""><td>81.3</td><td>44</td></lod<>	81.3	44
BMDDH23_01	14.2	14.7	0.5	<lod< td=""><td>4525</td><td>4973</td><td><lod< td=""><td><lod< td=""><td>134.7</td><td>13</td></lod<></td></lod<></td></lod<>	4525	4973	<lod< td=""><td><lod< td=""><td>134.7</td><td>13</td></lod<></td></lod<>	<lod< td=""><td>134.7</td><td>13</td></lod<>	134.7	13
BMDDH23_01	14.7	15.3	0.6	<lod< td=""><td>3937</td><td>2226</td><td><lod< td=""><td><lod< td=""><td>91.1</td><td>8</td></lod<></td></lod<></td></lod<>	3937	2226	<lod< td=""><td><lod< td=""><td>91.1</td><td>8</td></lod<></td></lod<>	<lod< td=""><td>91.1</td><td>8</td></lod<>	91.1	8
BMDDH23_01	15.3	16.0	0.7	<lod< td=""><td>8459</td><td>9162</td><td><lod< td=""><td><lod< td=""><td>74.7</td><td>51</td></lod<></td></lod<></td></lod<>	8459	9162	<lod< td=""><td><lod< td=""><td>74.7</td><td>51</td></lod<></td></lod<>	<lod< td=""><td>74.7</td><td>51</td></lod<>	74.7	51
BMDDH23_01	16.0	16.4	0.4	8	28882	1183	<lod< td=""><td><lod< td=""><td>53</td><td>106</td></lod<></td></lod<>	<lod< td=""><td>53</td><td>106</td></lod<>	53	106
BMDDH23_01	16.4	16.8	0.4	<lod< td=""><td>8053</td><td>1405</td><td><lod< td=""><td><lod< td=""><td>104.5</td><td>72</td></lod<></td></lod<></td></lod<>	8053	1405	<lod< td=""><td><lod< td=""><td>104.5</td><td>72</td></lod<></td></lod<>	<lod< td=""><td>104.5</td><td>72</td></lod<>	104.5	72
BMDDH23_01	16.8	17.7	0.9	<lod< td=""><td>5989</td><td>112</td><td><lod< td=""><td><lod< td=""><td>100.2</td><td>45</td></lod<></td></lod<></td></lod<>	5989	112	<lod< td=""><td><lod< td=""><td>100.2</td><td>45</td></lod<></td></lod<>	<lod< td=""><td>100.2</td><td>45</td></lod<>	100.2	45
BMDDH23_01	17.7	18.2	0.5	<lod< td=""><td>12826</td><td>2490</td><td><lod< td=""><td><lod< td=""><td>87.6</td><td>147</td></lod<></td></lod<></td></lod<>	12826	2490	<lod< td=""><td><lod< td=""><td>87.6</td><td>147</td></lod<></td></lod<>	<lod< td=""><td>87.6</td><td>147</td></lod<>	87.6	147
BMDDH23_01	18.2	18.7	0.5	<lod< td=""><td>5989</td><td>76</td><td><lod< td=""><td><lod< td=""><td>49.1</td><td>64</td></lod<></td></lod<></td></lod<>	5989	76	<lod< td=""><td><lod< td=""><td>49.1</td><td>64</td></lod<></td></lod<>	<lod< td=""><td>49.1</td><td>64</td></lod<>	49.1	64
BMDDH23_01	18.7	19.4	0.6	<lod< td=""><td>7148</td><td>95</td><td><lod< td=""><td><lod< td=""><td>72.6</td><td>76</td></lod<></td></lod<></td></lod<>	7148	95	<lod< td=""><td><lod< td=""><td>72.6</td><td>76</td></lod<></td></lod<>	<lod< td=""><td>72.6</td><td>76</td></lod<>	72.6	76
BMDDH23_01	19.4	20.1	0.7	22	21179	282	<lod< td=""><td><lod< td=""><td>188.1</td><td>265</td></lod<></td></lod<>	<lod< td=""><td>188.1</td><td>265</td></lod<>	188.1	265
BMDDH23_01	20.1	20.7	0.6	249	128295	302	<lod< td=""><td>1447</td><td>32.6</td><td>427</td></lod<>	1447	32.6	427
BMDDH23_01	20.7	21.5	0.8	32	21431	61	<lod< td=""><td><lod< td=""><td>52.4</td><td>117</td></lod<></td></lod<>	<lod< td=""><td>52.4</td><td>117</td></lod<>	52.4	117
BMDDH23_01	21.5	21.9	0.5	51	19094	95	<lod< td=""><td><lod< td=""><td>74.8</td><td>191</td></lod<></td></lod<>	<lod< td=""><td>74.8</td><td>191</td></lod<>	74.8	191
BMDDH23_01	21.9	22.6	0.6	63	24992	68	<lod< td=""><td><lod< td=""><td>48.2</td><td>240</td></lod<></td></lod<>	<lod< td=""><td>48.2</td><td>240</td></lod<>	48.2	240
BMDDH23_01	22.6	23.4	0.9	115	109279	84	<lod< td=""><td>11623</td><td>38.2</td><td>190</td></lod<>	11623	38.2	190

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Pb (ppm)	S (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_01	23.4	23.8	0.3	6012	201027	100	<lod< th=""><th>150328</th><th>66.5</th><th>1294</th></lod<>	150328	66.5	1294
BMDDH23_01	23.8	25.0	1.2	660	159070	201	<lod< td=""><td>120231</td><td>0.8</td><td>1991</td></lod<>	120231	0.8	1991
BMDDH23_01	32.5	32.9	0.3	1258	159818	305	<lod< td=""><td>129887</td><td>1.7</td><td>3958</td></lod<>	129887	1.7	3958
BMDDH23_01	36.8	37.6	0.9	609.8	163569	161	79	80607	0.55	3540
BMDDH23_01	39.2	39.7	0.5	479.3	159839	452	46	71688	1.81	3829
BMDDH23_01	41.1	41.8	0.7	359.8	130186	27	18	36406	0.18	1292
BMDDH23_01	42.7	43.1	0.4	776.9	250000	313	34	110999	0.51	3778
BMDDH23_01	43.1	43.4	0.3	769.2	229656	371	33	88317	0.7	3326
BMDDH23_01	44.9	45.5	0.6	670.6	224385	149	30	86750	1.02	3640
BMDDH23_01	45.5	45.9	0.4	1213.5	250000	224	48	114744	0.51	5103
BMDDH23_01	47.2	47.5	0.3	1222.4	206162	254	76	119702	0.46	3017
BMDDH23_01	64.0	64.9	0.9	1227.8	157227	229	345	95799	1.54	177
BMDDH23_01	121.0	121.7	0.7	3891.2	149484	311	154412	28970	10.8	9931
BMDDH23_01	138.5	139.0	0.5	5	10234	54	<lod< td=""><td>1037</td><td>82.4</td><td>291</td></lod<>	1037	82.4	291
BMDDH23_01	139.0	139.7	0.7	17	5116	16	<lod< td=""><td>899</td><td>40.2</td><td>361</td></lod<>	899	40.2	361
BMDDH23_01	139.7	140.1	0.4	<lod< td=""><td>3646</td><td>30</td><td><lod< td=""><td>273</td><td>23.8</td><td>315</td></lod<></td></lod<>	3646	30	<lod< td=""><td>273</td><td>23.8</td><td>315</td></lod<>	273	23.8	315
BMDDH23_01	140.1	140.7	0.6	<lod< td=""><td>3601</td><td>17</td><td><lod< td=""><td>303</td><td>30.5</td><td>321</td></lod<></td></lod<>	3601	17	<lod< td=""><td>303</td><td>30.5</td><td>321</td></lod<>	303	30.5	321
BMDDH23_01	140.7	141.1	0.4	<lod< td=""><td>3382</td><td>8</td><td><lod< td=""><td><lod< td=""><td>16.1</td><td>295</td></lod<></td></lod<></td></lod<>	3382	8	<lod< td=""><td><lod< td=""><td>16.1</td><td>295</td></lod<></td></lod<>	<lod< td=""><td>16.1</td><td>295</td></lod<>	16.1	295
BMDDH23_01	141.1	141.6	0.5	<lod< td=""><td>2682</td><td>18</td><td><lod< td=""><td>204</td><td>6.4</td><td>345</td></lod<></td></lod<>	2682	18	<lod< td=""><td>204</td><td>6.4</td><td>345</td></lod<>	204	6.4	345
BMDDH23_01	141.6	142.2	0.6	<lod< td=""><td>4254</td><td>36</td><td><lod< td=""><td>533</td><td>30.6</td><td>442</td></lod<></td></lod<>	4254	36	<lod< td=""><td>533</td><td>30.6</td><td>442</td></lod<>	533	30.6	442
BMDDH23_01	142.2	142.7	0.5	<lod< td=""><td>5538</td><td>46</td><td><lod< td=""><td>290</td><td>34.9</td><td>261</td></lod<></td></lod<>	5538	46	<lod< td=""><td>290</td><td>34.9</td><td>261</td></lod<>	290	34.9	261
BMDDH23_01	142.7	143.5	0.8	<lod< td=""><td>7194</td><td>38</td><td><lod< td=""><td><lod< td=""><td>25.3</td><td>122</td></lod<></td></lod<></td></lod<>	7194	38	<lod< td=""><td><lod< td=""><td>25.3</td><td>122</td></lod<></td></lod<>	<lod< td=""><td>25.3</td><td>122</td></lod<>	25.3	122
BMDDH23_01	143.5	145.4	1.9	32	98293	371	<lod< td=""><td>505</td><td>3.5</td><td>2804</td></lod<>	505	3.5	2804
BMDDH23_01	145.4	146.3	0.9	10	107414	151	<lod< td=""><td>215</td><td>4.3</td><td>2067</td></lod<>	215	4.3	2067
BMDDH23_01	146.3	147.0	0.6	<lod< td=""><td>4625</td><td>29</td><td><lod< td=""><td><lod< td=""><td>29.2</td><td>226</td></lod<></td></lod<></td></lod<>	4625	29	<lod< td=""><td><lod< td=""><td>29.2</td><td>226</td></lod<></td></lod<>	<lod< td=""><td>29.2</td><td>226</td></lod<>	29.2	226
BMDDH23_01	147.0	147.6	0.6	<lod< td=""><td>4276</td><td>18</td><td><lod< td=""><td><lod< td=""><td>44.4</td><td>182</td></lod<></td></lod<></td></lod<>	4276	18	<lod< td=""><td><lod< td=""><td>44.4</td><td>182</td></lod<></td></lod<>	<lod< td=""><td>44.4</td><td>182</td></lod<>	44.4	182
BMDDH23_01	147.6	148.1	0.5	<lod< td=""><td>6114</td><td>62</td><td><lod< td=""><td><lod< td=""><td>71.4</td><td>141</td></lod<></td></lod<></td></lod<>	6114	62	<lod< td=""><td><lod< td=""><td>71.4</td><td>141</td></lod<></td></lod<>	<lod< td=""><td>71.4</td><td>141</td></lod<>	71.4	141
BMDDH23_01	148.1	148.7	0.5	5	5160	32	<lod< td=""><td><lod< td=""><td>19.8</td><td>177</td></lod<></td></lod<>	<lod< td=""><td>19.8</td><td>177</td></lod<>	19.8	177
BMDDH23_01	148.7	149.5	0.9	43	92231	157	<lod< td=""><td>1827</td><td>4</td><td>1151</td></lod<>	1827	4	1151
BMDDH23_01	172.5	173.2	0.7	128	144747	408	<lod< td=""><td>19149</td><td>1.7</td><td>4242</td></lod<>	19149	1.7	4242
BMDDH23_01	173.2	173.7	0.4	<lod< td=""><td>20404</td><td>79</td><td><lod< td=""><td>371</td><td>62.5</td><td>820</td></lod<></td></lod<>	20404	79	<lod< td=""><td>371</td><td>62.5</td><td>820</td></lod<>	371	62.5	820
BMDDH23_01	173.7	174.7	1.0	32	112291	237	<lod< td=""><td>1322</td><td>2.5</td><td>1440</td></lod<>	1322	2.5	1440
BMDDH23_02	0.0	0.8	0.8	25	75598	237	<lod< td=""><td><lod< td=""><td>1.4</td><td>224</td></lod<></td></lod<>	<lod< td=""><td>1.4</td><td>224</td></lod<>	1.4	224
BMDDH23_02	0.8	1.2	0.5	7	76974	495	<lod< td=""><td><lod< td=""><td>5</td><td>304</td></lod<></td></lod<>	<lod< td=""><td>5</td><td>304</td></lod<>	5	304
BMDDH23_02	1.2	1.8	0.6	27	72312	339	<lod< td=""><td><lod< td=""><td>1.2</td><td>169</td></lod<></td></lod<>	<lod< td=""><td>1.2</td><td>169</td></lod<>	1.2	169
BMDDH23_02	1.8	2.7	0.9	<lod< td=""><td>23584</td><td>769</td><td><lod< td=""><td><lod< td=""><td>53.2</td><td>90</td></lod<></td></lod<></td></lod<>	23584	769	<lod< td=""><td><lod< td=""><td>53.2</td><td>90</td></lod<></td></lod<>	<lod< td=""><td>53.2</td><td>90</td></lod<>	53.2	90
BMDDH23_02	2.7	3.4	0.6	<lod< td=""><td>10000</td><td>4949</td><td><lod< td=""><td><lod< td=""><td>42.5</td><td>104</td></lod<></td></lod<></td></lod<>	10000	4949	<lod< td=""><td><lod< td=""><td>42.5</td><td>104</td></lod<></td></lod<>	<lod< td=""><td>42.5</td><td>104</td></lod<>	42.5	104

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Pb (ppm)	S (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_02	3.4	4.3	0.9	<lod< th=""><th>57981</th><th>1250</th><th><lod< th=""><th><lod< th=""><th>14.9</th><th>168</th></lod<></th></lod<></th></lod<>	57981	1250	<lod< th=""><th><lod< th=""><th>14.9</th><th>168</th></lod<></th></lod<>	<lod< th=""><th>14.9</th><th>168</th></lod<>	14.9	168
BMDDH23_02	4.3	4.7	0.5	14	60538	1202	<lod< td=""><td><lod< td=""><td>21.8</td><td>220</td></lod<></td></lod<>	<lod< td=""><td>21.8</td><td>220</td></lod<>	21.8	220
BMDDH23_02	4.7	5.3	0.6	<lod< td=""><td>7708</td><td>8149</td><td><lod< td=""><td><lod< td=""><td>58.7</td><td>37</td></lod<></td></lod<></td></lod<>	7708	8149	<lod< td=""><td><lod< td=""><td>58.7</td><td>37</td></lod<></td></lod<>	<lod< td=""><td>58.7</td><td>37</td></lod<>	58.7	37
BMDDH23_02	5.3	5.9	0.6	<lod< td=""><td>5999</td><td>3516</td><td><lod< td=""><td><lod< td=""><td>33</td><td>35</td></lod<></td></lod<></td></lod<>	5999	3516	<lod< td=""><td><lod< td=""><td>33</td><td>35</td></lod<></td></lod<>	<lod< td=""><td>33</td><td>35</td></lod<>	33	35
BMDDH23_02	5.9	6.6	0.6	43	63851	1895	<lod< td=""><td><lod< td=""><td>3</td><td>75</td></lod<></td></lod<>	<lod< td=""><td>3</td><td>75</td></lod<>	3	75
BMDDH23_02	6.6	7.0	0.5	13	74942	1872	<lod< td=""><td><lod< td=""><td>0.9</td><td>110</td></lod<></td></lod<>	<lod< td=""><td>0.9</td><td>110</td></lod<>	0.9	110
BMDDH23_02	7.0	9.6	2.6	16	70704	1823	<lod< td=""><td><lod< td=""><td>2.5</td><td>121</td></lod<></td></lod<>	<lod< td=""><td>2.5</td><td>121</td></lod<>	2.5	121
BMDDH23_02	9.6	10.1	0.5	44	81958	1280	<lod< td=""><td><lod< td=""><td>0.5</td><td>86</td></lod<></td></lod<>	<lod< td=""><td>0.5</td><td>86</td></lod<>	0.5	86
BMDDH23_02	10.1	10.7	0.6	22	92141	1573	<lod< td=""><td><lod< td=""><td>2.1</td><td>111</td></lod<></td></lod<>	<lod< td=""><td>2.1</td><td>111</td></lod<>	2.1	111
BMDDH23_02	10.7	11.1	0.5	<lod< td=""><td>8881</td><td>11404</td><td><lod< td=""><td><lod< td=""><td>117.6</td><td>35</td></lod<></td></lod<></td></lod<>	8881	11404	<lod< td=""><td><lod< td=""><td>117.6</td><td>35</td></lod<></td></lod<>	<lod< td=""><td>117.6</td><td>35</td></lod<>	117.6	35
BMDDH23_02	11.1	11.9	0.8	<lod< td=""><td>11053</td><td>15472</td><td><lod< td=""><td><lod< td=""><td>136.4</td><td>73</td></lod<></td></lod<></td></lod<>	11053	15472	<lod< td=""><td><lod< td=""><td>136.4</td><td>73</td></lod<></td></lod<>	<lod< td=""><td>136.4</td><td>73</td></lod<>	136.4	73
BMDDH23_02	11.9	12.2	0.3	<lod< td=""><td>11991</td><td>15766</td><td><lod< td=""><td><lod< td=""><td>71.4</td><td>84</td></lod<></td></lod<></td></lod<>	11991	15766	<lod< td=""><td><lod< td=""><td>71.4</td><td>84</td></lod<></td></lod<>	<lod< td=""><td>71.4</td><td>84</td></lod<>	71.4	84
BMDDH23_02	12.2	13.0	0.7	<lod< td=""><td>10167</td><td>14384</td><td><lod< td=""><td><lod< td=""><td>104.2</td><td>57</td></lod<></td></lod<></td></lod<>	10167	14384	<lod< td=""><td><lod< td=""><td>104.2</td><td>57</td></lod<></td></lod<>	<lod< td=""><td>104.2</td><td>57</td></lod<>	104.2	57
BMDDH23_02	13.0	14.5	1.5	59	77195	729	<lod< td=""><td>9777</td><td>97.7</td><td>417</td></lod<>	9777	97.7	417
BMDDH23_02	14.5	15.3	0.8	38	95135	518	<lod< td=""><td>26132</td><td>81.5</td><td>164</td></lod<>	26132	81.5	164
BMDDH23_02	15.3	16.2	0.9	31	35979	1412	<lod< td=""><td>3478</td><td>95.1</td><td>192</td></lod<>	3478	95.1	192
BMDDH23_02	16.2	17.0	0.9	27	36377	320	<lod< td=""><td>2209</td><td>55.2</td><td>214</td></lod<>	2209	55.2	214
BMDDH23_02	17.0	17.7	0.6	158	134084	330	<lod< td=""><td>16424</td><td>82.3</td><td>572</td></lod<>	16424	82.3	572
BMDDH23_02	17.7	18.4	0.7	242	163215	94	<lod< td=""><td>32945</td><td>10.3</td><td>217</td></lod<>	32945	10.3	217
BMDDH23_02	18.4	19.2	0.8	190	176611	131	<lod< td=""><td>28463</td><td>13.9</td><td>637</td></lod<>	28463	13.9	637
BMDDH23_02	19.2	20.2	1.0	103	131557	54	<lod< td=""><td>16888</td><td>2.4</td><td>819</td></lod<>	16888	2.4	819
BMDDH23_02	20.2	21.2	1.0	44	128142	65	<lod< td=""><td>26559</td><td>8.8</td><td>1189</td></lod<>	26559	8.8	1189
BMDDH23_02	21.2	22.3	1.1	96	41534	80	<lod< td=""><td>2863</td><td>130.4</td><td>465</td></lod<>	2863	130.4	465
BMDDH23_02	22.3	23.0	0.8	40	38851	113	<lod< td=""><td>3976</td><td>70.2</td><td>278</td></lod<>	3976	70.2	278
BMDDH23_02	23.0	23.4	0.4	415	65441	138	<lod< td=""><td>15252</td><td>93</td><td>317</td></lod<>	15252	93	317
BMDDH23_02	23.4	24.1	0.7	121	61499	82	<lod< td=""><td>2263</td><td>34.7</td><td>671</td></lod<>	2263	34.7	671
BMDDH23_02	24.1	24.7	0.6	124	52638	77	<lod< td=""><td>1530</td><td>68.4</td><td>549</td></lod<>	1530	68.4	549
BMDDH23_02	24.7	25.3	0.6	19	21962	61	<lod< td=""><td>643</td><td>70.4</td><td>181</td></lod<>	643	70.4	181
BMDDH23_02	25.3	26.2	0.9	202	86047	224	<lod< td=""><td>305</td><td>29</td><td>942</td></lod<>	305	29	942
BMDDH23_02	26.2	38.4	12.2	112	109919	188	<lod< td=""><td>819</td><td>3.4</td><td>428</td></lod<>	819	3.4	428
BMDDH23_02	38.4	39.6	1.2	59	107651	245	<lod< td=""><td><lod< td=""><td>1.1</td><td>140</td></lod<></td></lod<>	<lod< td=""><td>1.1</td><td>140</td></lod<>	1.1	140
BMDDH23_02	39.6	39.9	0.3	<lod< td=""><td>9747</td><td>80</td><td><lod< td=""><td><lod< td=""><td>46.3</td><td>59</td></lod<></td></lod<></td></lod<>	9747	80	<lod< td=""><td><lod< td=""><td>46.3</td><td>59</td></lod<></td></lod<>	<lod< td=""><td>46.3</td><td>59</td></lod<>	46.3	59
BMDDH23_02	39.9	41.1	1.2	38	107547	302	<lod< td=""><td><lod< td=""><td>1.5</td><td>125</td></lod<></td></lod<>	<lod< td=""><td>1.5</td><td>125</td></lod<>	1.5	125
BMDDH23_03	39.3	39.9	0.6	43	91907	255	<lod< td=""><td>647</td><td>1.6</td><td>101</td></lod<>	647	1.6	101
BMDDH23_03	39.9	40.8	0.9	32	90802	237	<lod< td=""><td><lod< td=""><td>1.5</td><td>96</td></lod<></td></lod<>	<lod< td=""><td>1.5</td><td>96</td></lod<>	1.5	96
BMDDH23_03	40.8	40.9	0.2	61	84235	234	<lod< td=""><td>1818</td><td>1.3</td><td>103</td></lod<>	1818	1.3	103
BMDDH23_03	40.9	42.1	1.1	23	83816	246	<lod< td=""><td>650</td><td>7.1</td><td>94</td></lod<>	650	7.1	94

Level 8, 216 St Georges Terrace Perth WA 6000 chariotcorporation.com ABN 13 637 559 847

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Pb (ppm)	S (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_03	42.1	42.9	0.9	27	80594	209	<lod< td=""><td>647</td><td>1</td><td>95</td></lod<>	647	1	95
BMDDH23_03	42.9	43.5	0.5	<lod< td=""><td>83751</td><td>230</td><td><lod< td=""><td>235</td><td>0.9</td><td>94</td></lod<></td></lod<>	83751	230	<lod< td=""><td>235</td><td>0.9</td><td>94</td></lod<>	235	0.9	94
BMDDH23_03	43.5	43.9	0.5	170	105247	401	<lod< td=""><td>4686</td><td>1.2</td><td>119</td></lod<>	4686	1.2	119
BMDDH23_03	45.3	45.3	0.0	<lod< td=""><td>12179</td><td>4846</td><td><lod< td=""><td>-200</td><td>115.2</td><td>32</td></lod<></td></lod<>	12179	4846	<lod< td=""><td>-200</td><td>115.2</td><td>32</td></lod<>	-200	115.2	32
BMDDH23_03	46.0	46.0	0.0	<lod< td=""><td>6429</td><td>6504</td><td><lod< td=""><td><lod< td=""><td>88.1</td><td>12</td></lod<></td></lod<></td></lod<>	6429	6504	<lod< td=""><td><lod< td=""><td>88.1</td><td>12</td></lod<></td></lod<>	<lod< td=""><td>88.1</td><td>12</td></lod<>	88.1	12
BMDDH23_03	46.7	46.7	0.0	<lod< td=""><td>7360</td><td>1970</td><td><lod< td=""><td><lod< td=""><td>91.6</td><td>41</td></lod<></td></lod<></td></lod<>	7360	1970	<lod< td=""><td><lod< td=""><td>91.6</td><td>41</td></lod<></td></lod<>	<lod< td=""><td>91.6</td><td>41</td></lod<>	91.6	41
BMDDH23_03	47.5	48.5	0.9	<lod< td=""><td>7437</td><td>4919</td><td><lod< td=""><td><lod< td=""><td>123.9</td><td>28</td></lod<></td></lod<></td></lod<>	7437	4919	<lod< td=""><td><lod< td=""><td>123.9</td><td>28</td></lod<></td></lod<>	<lod< td=""><td>123.9</td><td>28</td></lod<>	123.9	28
BMDDH23_03	48.5	49.1	0.6	<lod< td=""><td>7420</td><td>7879</td><td><lod< td=""><td><lod< td=""><td>147.6</td><td>18</td></lod<></td></lod<></td></lod<>	7420	7879	<lod< td=""><td><lod< td=""><td>147.6</td><td>18</td></lod<></td></lod<>	<lod< td=""><td>147.6</td><td>18</td></lod<>	147.6	18
BMDDH23_03	49.1	50.0	0.9	<lod< td=""><td>6331</td><td>4989</td><td><lod< td=""><td><lod< td=""><td>99.2</td><td>16</td></lod<></td></lod<></td></lod<>	6331	4989	<lod< td=""><td><lod< td=""><td>99.2</td><td>16</td></lod<></td></lod<>	<lod< td=""><td>99.2</td><td>16</td></lod<>	99.2	16
BMDDH23_03	50.0	50.9	0.9	<lod< td=""><td>5443</td><td>3074</td><td><lod< td=""><td><lod< td=""><td>68.7</td><td>23</td></lod<></td></lod<></td></lod<>	5443	3074	<lod< td=""><td><lod< td=""><td>68.7</td><td>23</td></lod<></td></lod<>	<lod< td=""><td>68.7</td><td>23</td></lod<>	68.7	23
BMDDH23_03	50.9	51.8	0.9	<lod< td=""><td>6120</td><td>4222</td><td><lod< td=""><td><lod< td=""><td>88.2</td><td>25</td></lod<></td></lod<></td></lod<>	6120	4222	<lod< td=""><td><lod< td=""><td>88.2</td><td>25</td></lod<></td></lod<>	<lod< td=""><td>88.2</td><td>25</td></lod<>	88.2	25
BMDDH23_03	51.8	52.4	0.6	<lod< td=""><td>4215</td><td>1545</td><td><lod< td=""><td><lod< td=""><td>36.5</td><td>15</td></lod<></td></lod<></td></lod<>	4215	1545	<lod< td=""><td><lod< td=""><td>36.5</td><td>15</td></lod<></td></lod<>	<lod< td=""><td>36.5</td><td>15</td></lod<>	36.5	15
BMDDH23_03	52.4	53.3	0.9	<lod< td=""><td>5871</td><td>8398</td><td><lod< td=""><td><lod< td=""><td>41.2</td><td>13</td></lod<></td></lod<></td></lod<>	5871	8398	<lod< td=""><td><lod< td=""><td>41.2</td><td>13</td></lod<></td></lod<>	<lod< td=""><td>41.2</td><td>13</td></lod<>	41.2	13
BMDDH23_03	53.3	54.4	1.1	<lod< td=""><td>4509</td><td>3477</td><td><lod< td=""><td><lod< td=""><td>37.2</td><td>12</td></lod<></td></lod<></td></lod<>	4509	3477	<lod< td=""><td><lod< td=""><td>37.2</td><td>12</td></lod<></td></lod<>	<lod< td=""><td>37.2</td><td>12</td></lod<>	37.2	12
BMDDH23_03	54.4	55.3	0.9	<lod< td=""><td>4230</td><td>1346</td><td><lod< td=""><td><lod< td=""><td>39.5</td><td>17</td></lod<></td></lod<></td></lod<>	4230	1346	<lod< td=""><td><lod< td=""><td>39.5</td><td>17</td></lod<></td></lod<>	<lod< td=""><td>39.5</td><td>17</td></lod<>	39.5	17
BMDDH23_03	55.3	56.3	1.0	<lod< td=""><td>4880</td><td>2260</td><td><lod< td=""><td><lod< td=""><td>45.3</td><td>21</td></lod<></td></lod<></td></lod<>	4880	2260	<lod< td=""><td><lod< td=""><td>45.3</td><td>21</td></lod<></td></lod<>	<lod< td=""><td>45.3</td><td>21</td></lod<>	45.3	21
BMDDH23_03	56.3	57.3	1.0	<lod< td=""><td>5243</td><td>3472</td><td><lod< td=""><td><lod< td=""><td>66.5</td><td>15</td></lod<></td></lod<></td></lod<>	5243	3472	<lod< td=""><td><lod< td=""><td>66.5</td><td>15</td></lod<></td></lod<>	<lod< td=""><td>66.5</td><td>15</td></lod<>	66.5	15
BMDDH23_03	57.3	58.2	0.9	<lod< td=""><td>5136</td><td>1533</td><td><lod< td=""><td><lod< td=""><td>67.6</td><td>21</td></lod<></td></lod<></td></lod<>	5136	1533	<lod< td=""><td><lod< td=""><td>67.6</td><td>21</td></lod<></td></lod<>	<lod< td=""><td>67.6</td><td>21</td></lod<>	67.6	21
BMDDH23_03	58.2	59.2	1.0	<lod< td=""><td>5079</td><td>2675</td><td><lod< td=""><td><lod< td=""><td>103.8</td><td>15</td></lod<></td></lod<></td></lod<>	5079	2675	<lod< td=""><td><lod< td=""><td>103.8</td><td>15</td></lod<></td></lod<>	<lod< td=""><td>103.8</td><td>15</td></lod<>	103.8	15
BMDDH23_03	59.2	60.4	1.2	<lod< td=""><td>6300</td><td>3032</td><td><lod< td=""><td><lod< td=""><td>151</td><td>26</td></lod<></td></lod<></td></lod<>	6300	3032	<lod< td=""><td><lod< td=""><td>151</td><td>26</td></lod<></td></lod<>	<lod< td=""><td>151</td><td>26</td></lod<>	151	26
BMDDH23_03	60.4	61.1	0.8	<lod< td=""><td>6551</td><td>4539</td><td><lod< td=""><td><lod< td=""><td>117.2</td><td>24</td></lod<></td></lod<></td></lod<>	6551	4539	<lod< td=""><td><lod< td=""><td>117.2</td><td>24</td></lod<></td></lod<>	<lod< td=""><td>117.2</td><td>24</td></lod<>	117.2	24
BMDDH23_03	61.1	61.8	0.6	<lod< td=""><td>5077</td><td>4414</td><td><lod< td=""><td><lod< td=""><td>49.6</td><td>28</td></lod<></td></lod<></td></lod<>	5077	4414	<lod< td=""><td><lod< td=""><td>49.6</td><td>28</td></lod<></td></lod<>	<lod< td=""><td>49.6</td><td>28</td></lod<>	49.6	28
BMDDH23_03	61.8	62.7	0.9	7	7629	6573	<lod< td=""><td><lod< td=""><td>79</td><td>37</td></lod<></td></lod<>	<lod< td=""><td>79</td><td>37</td></lod<>	79	37
BMDDH23_03	62.7	64.3	1.6	37	30895	163	<lod< td=""><td>395</td><td>2.1</td><td>51</td></lod<>	395	2.1	51
BMDDH23_03	74.1	74.9	0.8	23	73165	263	<lod< td=""><td>1015</td><td>2.7</td><td>107</td></lod<>	1015	2.7	107

Note: Less than limit of detection ("<LoD")

SAMPLES	Cu ppm	Pb ppm	S ppm	Zn ppm	Pb* ppm
BMDDH 0043	609.8	79	80607	3540	
BMDDH 0044	479.3	46	71688	3829	
BMDDH 0045	359.8	18	36406	1292	
BMDDH 0046	776.9	34	110999	3778	
BMDDH 0046-X	806.2	33	111687	3687	
BMDDH 0047	769.2	33	88317	3326	
BMDDH 0048	670.6	30	86750	3640	
BMDDH 0049	1213.5	48	114744	5103	
BMDDH 0050	26.6	60	2652	90	
BMDDH 0051	1222.4	76	119702	3017	
BMDDH 0052	1227.8	345	95799	177	
BMDDH 0053	3891.2	>10000	28970	9931	154412
BMDDH 0053-X	3922.6	>10000	30576	9831	
BMDDH 0053 (RUN FROM COARSE REJECT)	4172.6	>10000	31188	9608	146022

Appendix 3 – Select core samples re-analyzed for Base Metals

*Samples returning assay values > 10,000 ppm Pb were reanalyzed

Appendix 4 – Soil Geochemistry Results¹

EAST (m)	NORTH (m)	Soil Type	Composited	Comp Distance	Li (ppm)	Pb (ppm)	Zn (ppm)
299963.7	4737906	Colluvium	Yes		22.2	13	78
300402.3	4737801	Colluvium	Yes		22.5	18	82
299913.3	4737904	Colluvium	Yes		22.7	13	70
300253.4	4737800	Colluvium	Yes		22.7	17	73
300199.1	4737805	Colluvium	Yes		22.7	19	75
300304.6	4737800	Colluvium	Yes		23	20	78
300352.1	4737801	Colluvium	Yes		23.4	21	94
299670.6	4738905	Colluvium	Yes		24	19	82
299615.9	4738902	Colluvium	Yes		24.2	18	83
300002.4	4737805	Colluvium	Yes		24.2	16	70
299566.9	4738901	Colluvium	Yes		24.4	19	99
299865.4	4737906	Colluvium	Yes		24.4	18	83
299467.3	4738702	Colluvium	Yes		24.5	25	260
299452.1	4738602	Colluvium	Yes		24.9	18	119
300216.9	4737905	Colluvium	Yes		25	19	76
300312.2	4737898	Colluvium	Yes		25	18	80
300113.9	4737905	Colluvium	Yes		25.5	16	90
300364.4	4737900	Colluvium	Yes		25.7	18	80
299554.9	4738608	Colluvium	F		25.8	17	255
299466	4738903	Colluvium	Yes		25.8	17	84
299499.6	4739002	Alluvium	F		25.9	18	79
299718.3	4738902	Colluvium	Yes		26	19	154
299870.7	4738908	Colluvium	Yes		26	18	87
299798.4	4738001	Colluvium	Yes		26	18	76
299550.7	4738203	Colluvium	F	15 Meters	26.1	16	122
299668.6	4739305	Colluvium	Yes		26.1	18	70
299897.7	4738205	Colluvium	F		26.2	15	90
299716.4	4739303	Colluvium	Yes		26.2	16	74
299817.4	4739304	Colluvium	Yes		26.2	17	68
299601.4	4738800	Colluvium	F		26.3	20	94
299512.4	4738699	Colluvium	Yes		26.3	24	131
299414.4	4738502	Colluvium	Yes		26.3	14	93
299515.3	4739102	Colluvium	F		26.4	18	76

¹ All coordinates are in NAD83 Z13N

					1
Composited	Comp Distance	Li (ppm)	Pb (ppm)	Zn (ppm)	
F		26.5	17	116	
Yes		26.5	23	90	
Yes		26.7	23	82	
F		26.8	20	94	
F	15 Meters	26.8	17	85	
 Yes		26.8	18	70	
Yes		26.9	15	78	
Yes		26.9	17	78	
Yes		26.9	18	76	
F	15 Meters	27	19	83	
Yes		27	16	79	
Yes		27.1	14	83	
Yes		27.1	17	85	
F	15 Meters	27.3	16	103	
Yes	15 Meters	27.6	18	82	
Yes		27.6	19	78	
F		27.6	17	71	
F		27.7	24	89	
F	15 Meters	27.8	20	90	
F		27.9	20	85	
 Yes		27.9	20	74	
 Yes		28.1	20	100	
 Yes		28.1	19	85	
 F	15 Meters	28.2	21	112	
 Yes		28.2	18	89	
 F		28.3	18	84	
 Yes		28.3	17	101	

	(11)						
299502.4	4738611	Colluvium	F		26.5	17	116
299765.8	4738703	Colluvium	Yes		26.5	23	90
299820.1	4738706	Colluvium	Yes		26.7	23	82
299547.9	4739001	Colluvium	F		26.8	20	94
299598.8	4738201	Colluvium	F	15 Meters	26.8	17	85
299766.3	4739306	Colluvium	Yes		26.8	18	70
299363.9	4738505	Colluvium	Yes		26.9	15	78
300352.2	4738004	Colluvium	Yes		26.9	17	78
300247.7	4738004	Colluvium	Yes		26.9	18	76
299952	4738800	Colluvium	F	15 Meters	27	19	83
300011.6	4737907	Colluvium	Yes		27	16	79
300068.5	4737910	Colluvium	Yes		27.1	14	83
300265.8	4737903	Colluvium	Yes		27.1	17	85
299751.5	4738200	Colluvium	F	15 Meters	27.3	16	103
299650.8	4738203	Colluvium	Yes	15 Meters	27.6	18	82
299514.7	4739306	Colluvium	Yes		27.6	19	78
299848.9	4738004	Colluvium	F		27.6	17	71
300052.3	4738800	Colluvium	F		27.7	24	89
299948.7	4738205	Colluvium	F	15 Meters	27.8	20	90
299752.4	4738800	Colluvium	F		27.9	20	85
300102.4	4737805	Colluvium	Yes		27.9	20	74
299566.9	4738701	Colluvium	Yes		28.1	20	100
300153.6	4737804	Colluvium	Yes		28.1	19	85
299700.7	4738201	Colluvium	F	15 Meters	28.2	21	112
299769.8	4738108	Colluvium	Yes		28.2	18	89
299801.5	4738802	Colluvium	F		28.3	18	84
299667.9	4738702	Colluvium	Yes		28.3	17	101
299719.6	4738700	Colluvium	Yes		28.3	18	89
299651.1	4738801	Colluvium	F		28.4	19	87
299817.5	4739104	Colluvium	Yes		28.6	18	76
299551.2	4738800	Colluvium	F		28.7	19	93
299615.5	4739306	Colluvium	Yes		28.7	18	77
299852.7	4738799	Colluvium	F		28.9	17	81
299559.4	4738506	Colluvium	Yes		28.9	18	99
299701.9	4738801	Colluvium	F		29	19	91
299999	4738204	Colluvium	F	15 Meters	29	22	103
299871.5	4738704	Colluvium	Yes		29	19	89
299668.2	4738100	Colluvium	Yes		29	18	102
299872.3	4738100	Colluvium	Yes		29	18	79
300002.2	4738801	Colluvium	F		29.1	21	88
299565.4	4739100	Colluvium	Yes		29.1	18	79

EAST

(m)

NORTH

(m)

Soil Type

EAST (m)	NORTH (m)	Soil Type	Composited	Comp Distance	Li (ppm)	Pb (ppm)	Zn (ppm)
299898.3	4738006	Colluvium	Yes		29.2	19	77
299902	4738801	Colluvium	F		29.3	20	90
299617.9	4738701	Colluvium	Yes		29.3	19	95
299456.7	4738508	Colluvium	Yes		29.3	17	119
299501.3	4738799	Colluvium	F		29.5	21	136
299516.2	4738900	Colluvium	Yes		29.5	13	80
299922.9	4738102	Colluvium	Yes		29.5	19	78
300316.1	4738105	Colluvium	Yes		29.5	18	89
299399.5	4738402	Colluvium	F	15 Meters	29.6	15	76
300098.9	4737795	Colluvium	Yes		29.6	17	75
299963.1	4739098	Colluvium	Yes		29.6	18	75
300014.4	4738905	Colluvium	Yes		29.6	18	85
299820.5	4738104	Colluvium	Yes		29.6	16	86
299413.9	4738302	Colluvium	F	15 Meters	29.7	23	78
299948.2	4738003	Colluvium	Yes		29.8	19	131
300051.5	4738200	Colluvium	F	15 Meters	29.9	19	96
299901.7	4739000		F		30	19	89
299869.5	4739303	Colluvium	Yes		30.1	18	76
299715.5	4739102	Colluvium	Yes		30.1	18	84
299715.4	4738105	Colluvium	Yes		30.1	15	87
299948.4	4739000	Colluvium	F		30.3	17	84
299515.6	4738302	Colluvium	F	15 Meters	30.3	18	82
300301.5	4738005	Colluvium	Yes		30.3	19	82
300050.5	4737804	Colluvium	Yes		30.3	13	75
299713.9	4738502	Colluvium	Yes		30.4	21	101
299465.5	4738304	Colluvium	F	15 Meters	30.6	19	83
299599.4	4739002	Colluvium	F		30.7	19	89
299704.2	4738603	Colluvium	F		30.7	30	388
299766.8	4739103	Colluvium	Yes		30.7	17	79
300001.2	4738004	Colluvium	Yes		30.7	16	99
300200.5	4738008	Colluvium	Yes		30.8	17	77
299497.5	4739199	Colluvium	Yes		31	19	79
299914.2	4739099	Colluvium	Yes		31	18	85
299849.9	4739003	Colluvium	F	15 Meters	31.1	19	83
299753.6	4738607	Colluvium	F		31.2	20	193
299566.1	4739305	Colluvium	Yes		31.3	19	82
299511.2	4738508	Colluvium	Yes		31.4	17	91
299548.2	4739199	Colluvium	Yes		31.6	19	79
299667.8	4739101	Colluvium	Yes		31.6	19	91
299919.3	4738702	Colluvium	Yes		31.6	19	94
299966.2	4738104	Colluvium	Yes		31.7	17	82
299652.7	4738604	Colluvium	F		31.9	22	519

EAST (m)	NORTH (m)	Soil Type	Composited	Comp Distance	Li (ppm)	Pb (ppm)	Zn (ppm)
299865.7	4739101	Colluvium	Yes		31.9	18	91
300067.1	4738700	Colluvium	Yes		32.3	24	157
299666.4	4738302	Colluvium	F	15 Meters	32.6	19	110
299770.9	4738910	Colluvium	Yes		32.6	19	105
299917.4	4738906	Colluvium	Yes		32.6	19	102
299659.2	4738503	Colluvium	Yes		32.6	17	95
299966.8	4738904	Colluvium	Yes		32.7	17	118
299615.3	4739105	Colluvium	Yes		32.8	17	80
299817.6	4738910	Colluvium	Yes		32.8	17	89
299896.6	4739196		F		33.2	18	89
299798.3	4739001	Colluvium	F		33.3	19	102
299608.8	4738513	Colluvium	Yes		33.3	17	99
299564.3	4738304	Colluvium	F		33.5	12	108
300166.9	4737905	Alluvium	Yes		33.8	19	78
299748.9	4739003		F		34.2	19	155
300202.3	4738404		F	15 Meters	34.2	19	77
299701.7	4738402	Colluvium	Yes	15 Meters	34.2	16	86
299714.7	4738305	Colluvium	F	15 Meters	34.2	17	91
300299.4	4738200	Colluvium	F	15 Meters	34.3	21	107
299702.8	4739003	Colluvium	F		34.6	23	115
299797.5	4739201	Colluvium	Yes		34.9	17	79
299968.5	4738307	Colluvium	F	15 Meters	34.9	17	90
300017.1	4738702	Colluvium	Yes		34.9	25	274
300103.3	4738596	Colluvium	Yes		34.9	34	265
299748	4739196		F		35.1	19	90
299647.6	4739202	Colluvium	Yes		35.1	22	88
299862	4739199		F		35.2	16	93
299749.1	4738402	Colluvium	F		35.3	16	88
299914.5	4738306	Colluvium	F	15 Meters	35.3	16	89
300017.5	4738306	Colluvium	F	15 Meters	35.8	17	99
300049.8	4738005	Colluvium	Yes		35.8	15	95
300274.9	4738102	Colluvium	Yes		37.3	19	94
299966.3	4738699	Colluvium	Yes		37.4	24	114
299998.8	4739002	Colluvium	F		37.5	21	100
299604.2	4738598	Colluvium	F		37.6	14	212
300163	4738506	Colluvium	Yes		38.1	21	83
300112.3	4738504	Colluvium	Yes		38.2	21	84
299801.6	4738603	Colluvium	F		38.6	29	258
300016.9	4738105	Colluvium	Yes		38.9	17	75
299802.4	4738205	Colluvium	F		39.1	17	93
299950.3	4738401	Colluvium	F		39.3	21	103
299550	4738404	Colluvium	Yes		39.3	18	88

EAST (m)	NORTH (m)	Soil Type	Composited	Comp Distance	Li (ppm)	Pb (ppm)	Zn (ppm)
299847.1	4738204	Colluvium	F		39.3	10	78
300117.2	4738307	Colluvium	F	15 Meters	39.8	18	104
299651.7	4738403	Colluvium	F	15 Meters	39.9	16	87
299648.1	4739004		F		40.3	20	92
299601.8	4738403	Colluvium	Yes	15 Meters	40.6	14	101
300217	4738304		F	15 Meters	41	19	81
299699.1	4739197	Colluvium	Yes		41	16	84
299597.3	4739200	Colluvium	Yes		41	18	82
300066.9	4738305	Colluvium	F		41.4	18	108
299764.7	4738302	Colluvium	F	15 Meters	42.4	18	83
300049.2	4738401	Colluvium	Yes	15 Meters	42.6	18	84
300250.4	4738198	Colluvium	F	15 Meters	43.9	18	95
300000	4738401	Colluvium	F	15 Meters	45.3	19	87
300054.1	4738605	Colluvium	Yes		46.4	31	261
300067.7	4738103	Colluvium	Yes		46.4	18	84
299614.8	4738303	Colluvium	F	15 Meters	46.6	14	87
300148.3	4738402	Colluvium	F		46.9	14	80
300163.6	4738301	Colluvium	F	15 Meters	48.4	24	104
299450.3	4738402	Colluvium	F		49.8	13	89
300011.4	4738507	Colluvium	Yes		50.2	24	121
299853.7	4738607	Colluvium	F		50.3	19	131
300101.3	4738400	Colluvium	F		51.7	21	97
299898	4738401	Colluvium	Yes	15 Meters	53.3	19	94
299800.2	4738404	Colluvium	F	15 Meters	53.3	19	96
300099.4	4738202	Colluvium	F	15 Meters	55.4	16	82
299500.5	4738401	Colluvium	Yes	15 Meters	56.8	20	112
299851.1	4738404	Colluvium	Yes	15 Meters	60.1	24	114
300060.9	4738505	Colluvium	Yes		60.4	20	81
299863.2	4738303	Colluvium	F		61.8	14	86
300002.2	4738608	Colluvium	Yes		62.1	35	423
300199.2	4738205	Colluvium	F	15 Meters	63.3	17	92
300117.7	4738105	Colluvium	Yes		67	18	76
299810.4	4738506	Colluvium	Yes		69.8	25	104
300150.7	4738206		F	15 Meters	77.1	18	88
299904.4	4738606	Colluvium	F		77.9	16	105
299811	4738306	Alluvium	F		81.5	18	95
299952.4	4738605	Colluvium	F		85.4	13	259
300224.3	4738104	Colluvium	Yes		93	18	87
299764.6	4738505	Colluvium	Yes		93.3	19	110
299864.7	4738506	Colluvium	Yes		114.8	26	130
299915.7	4738505	Colluvium	Yes		117.3	24	124
299963.4	4738503	Colluvium	Yes		118.2	50	176

EAST (m)	NORTH (m)	Soil Type	Composited	Comp Distance	Li (ppm)	Pb (ppm)	Zn (ppm)
299763.7	4738510	Colluvium	Yes		152.1	16	103
300172	4738106	Colluvium	Yes		169.7	20	82

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling which produces drill core has been utilised to sample the pegmatite below ground surface. This method is recognised as providing high quality information and samples of the unexposed geology. Core is split in half longitudinally using a core saw, and the half core was sampled on variable intervals typically between 0.25 and 1.5m intervals. Sampling was based primarily on rock type taking care not to include pegmatite and schist in the one sample, in larger dikes samples were further divided based on mineralogy. Sample mass ranged between 0.5 and 1.5kg primarily reflecting sample interval width, the typical mass averaged approximately 1kg. Samples were from 'B horizon' and were taken as composites consisting of three sub-samples spaced approximately 5m apart. Samples were dried and screened at the Laboratory and the -10 to +80 mesh fraction retained for analysis. Soil samples were assigned unique alphanumeric sample codes.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond core drilling was done using HQ (triple tube) rods from surface with a Longyear LF90 rig at the Black Mountain Project from November to December 2023. Most holes are inclined at between 40° and 70° to intersect the moderately to steeply dipping pegmatites. Core was oriented with typical gyroscopic setup on the top of the core barrel,

Criteria	JORC Code explanation	Commentary
		downhole surveys taken every 30m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recoveries were based on measured recovered intervals between the coreblocks. Recoveries were generally very high except in the rare highly fractured fault zones which were typically 0.5 to 1m in width comprising less than several percent overall. Intervals of broken core were sampled separately and where down-hole contamination, if present, was rare and was noted with the interval not included in assay reporting. Overall recovery was +97%. There was no apparent relationship between recovery and grade due to the overall high recoveries. Weathering is not intense. It is restricted to the upper 2 to 5m and did not have any effect on recoveries.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Quantitative and qualitative core logging was conducted on an ongoing basis during the drill program. Detailing lithologies, alteration and mineral species present along with oxidation etc, were the basis for selecting sampling intervals. Core was photographed with recoveries and RQD measured prior to splitting. All core was geologically logged before splitting and sampling for assaying. All logging and photographic data are stored in the database. Core was oriented and a reference line drawn along the top of the core, cut line was drawn adjacent to the orientation line, the half without the orientation line was sampled. The half retained after sampling was that with the reference line.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of 	 Core is sawn in half, and the half core was sampled on variable intervals typically between 0.25 and 1.5m intervals. Standards, duplicates, and blanks are inserted sequentially every 10th sample. The half core samples were dried in the Lab, crushed to >70% - 2mm; split, then pulverized 500g to >85% -75 micron. Duplicate samples were taken in the Laboratory, the crushed core was split into two sub samples, which were pulverized and analysed. The Company provided a numbered sample bag for any remaining coarse reject from the duplicate. The drilling produced HQ drill core and is considered to provide a representative

Criteria	JORC Code explanation	Commentary
	 samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	sample of the pegmatite which is coarse-grained and half core samples collected ranging from 0.25-1.5m from the hanging wall to footwall contacts.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The samples were assayed for a suite of 50 elements including: Co, Cs, Fe, Li, Ni, Pb, Rb, Sn, Ta and Zn. Sample pulps were analysed at American Assay Labs (1506 Glendale Ave, Sparks, NV 89431, USA) using a sodium peroxide fusion of an XXg aliquot with ICP-OES finish (method code IMNF53). Over limit values (> 10,000 ppm Li) were re-assayed using ICP analysis. Intervals of sulfide mineralisation were assayed using method IM-4AB52. Peroxide fusion results in the complete digestion of the sample into a molten flux. As fusion digestions are more aggressive than acid digestion methods, they are suitable for many refractory, difficult-to-dissolve minerals such as chromite, ilmenite, spinel, cassiterite and minerals of the tantalum-tungsten solid solution series. They also provide a more-complete digestion of some silicate mineral species and are considered to provide the most reliable determinations of lithium mineralisation. Sodium peroxide fusion is a total digest and considered the preferred method of assaying pegmatite samples. A standard industry accepted Quality Assurance and Quality Control ("QA/QC") program was employed to monitor the precision, accuracy and general reliability of the assay results from the drilling programme. The protocol included the insertion of duplicates, blanks and certified reference materials (CRMs) into the sample stream. In addition, American Assay Labs also incorporated its own internal QA/QC procedures to monitor its assay results prior to release to Chariot. OREAS standards were checked for laboratory accuracy, blanks checked for evidence of laboratory contamination and duplicate assays on crushed core reviewed for potential nugget effects. Variations, where present, were within acceptable limits.

Criteria	JORC Code explanation	Commentary
		 Refer to the JORC Table 1 in the Prospectus for further details on the rock chip sampling program. Geophysical instruments were not used in assessing the mineralisation. One core sample returned values >10,000 ppm Pb which was re analyzed using IM-4AB52 with Ore Grade finish. Soil samples were screened and -10+80 mesh fraction split and assayed by total digest and 48 elements determined by ICP-OES & MS analyses. The Competent Person is satisfied that the results of the QA/QC are acceptable and that the assay data from American Assay Labs is suitable for the reporting of the exploration results.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The one high-grade Pb sample was re-assayed using coarse reject material. Internal verification of the drilling and pegmatite intersections was routinely conducted by the exploration manager. No independent reviews or check sampling or assays have been conducted. The sampling served to verify historical mapping and sampling results. Logging was entered on field logs. Data was entered and stored electronically in an Access database. All core photos are stored on the Company database. No material data recording issues have been identified. No verification was conducted on soil samples. Assay data has not been adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar location and elevations are determined from the handheld GPS and are suitable for the reporting of exploration results (approximately 2.5m vertical and 5m vertical). Elevations were checked against the available USGS DTM with 3m resolution. Locations were recorded using a handheld Garmin GPS. Angled holes were surveyed using standard a standard drilling gyroscopic tool. Soil sample locations recorded via a handheld GPS. All coordinates are reported in UTM NAD83 Zone 13N.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 This first phase of exploration drilling at Black Mountain, designed to confirm the thickness, orientation and grade of mineralisation beneath the identified outcropping pegmatites in preparation for a more detailed closer spaced and systematic second phase of resource definition drilling. Samples are typically between 0.5 and 1.5m in length, no compositing of samples will be done at this early stage.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The pegmatite dikes dip at between 70° and 90° degrees. The inclination of the drill holes varied between 60° and 65 degrees° and orientated normal to the strike of the pegmatite. Reported intervals are apparent widths which are greater than the true widths. Based on the drill hole orientations relative to the pegmatite orientation the estimated true widths are range between 40% and 90% of the apparent width but have not been accurately established at this point. The relationship between drilling orientation and mineralisation is considered appropriate and should not introduce any sampling bias.
Sample security	• The measures taken to ensure sample security.	 Sample security is not considered to be issue for the Black Mountain Project. Core was promptly removed from the drill site to the core logging facility where it remained until being shipped to the laboratory by Chariot personnel.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 ERM Australia Consultants Pty Ltd (previously CSA Global) ("CSA Global"), ERM Sustainable Mining Services, have provided technical guidance for the development of the Black Mountain exploration plan and completed an independent review of the data, geological interpretations and exploration results pertaining to this announcement. CSA Global are satisfied these scientific and technical disclosures were appropriate to support the reporting of these Exploration Results.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral	 Type, reference name/number, location and	 The Black Mountain project area comprises 134 unpatented lode mining claims
tenement and	ownership including agreements or material	covering an area of 878 ha in Natrona Country, Wyoming.

Criteria	JORC Code explanation	Commentary
land tenure status	 issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Chariot currently holds a 93.9% interest in Wyoming Lithium Pty Ltd which holds a 100% interest in Panther Lithium Corporation ("PLC"). PLC holds 100% interest in the Black Mountain Project. There are no known impediments to the company tenure nor related issues which affect our ability to conduct exploration.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The Black Mountain pegmatite deposit is first described by Love (1942). A single spodumene dyke striking ENE with a dip of 30° to 60° to SSE. The dyke is described as 250 feet (75 m) in strike length and up to 10 feet (3 m) in thickness. The dyke in obscured by alluvium on its south-western end and is folded and irregular. The pegmatite contains spodumene with coarse K-feldspar, white quartz, mica and tourmaline. At this time development consisted of two small prospecting pits. A number of other exploration pits thought to date back to this period have also been identified from satellite imagery but is possibly related to some undocumented exploration. A comprehensive description of pegmatite occurrences in Wyoming and Colorado was compiled by the USGS and is provided by Hanley et al. (1950). This study describes 114 pegmatite occurrences in these states with an emphasis on beryl bearing pegmatites as the main commodity of economic interest at that time. Other commodities considered in this study were beryllium, lithia (Li₂O), muscovite, columbium-tantalum, potash feldspar and rare earth pegmatites. Two types of lithium-bearing pegmatite are known in Colorado and Wyoming. In one variety, the lithia is predominantly in the mineral lepidolite, a lithium mica, and in the other it is in the minerals spodumene and amblygonite. In 2022, Chariot conducted a first pass geochemistry survey at the Black Mountain Project comprising of ten (10) rock chip samples collected from pegmatite outcrops. In 2023, Chariot conducted a follow up geochemistry survey at the Black Mountain Project comprising of twelve (12) rock chip samples collected from pegmatite outcrops.

Criteria	JORC Code explanation	Commentary
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Black Mountain is a typical LCT-type Pegmatite dike swarm with coarse grained spodumene outcropping at surface. The Pegmatite dikes are hosted within Archean Greenstones and are assumed to be associated with Late-Archean to Lower Proterozoic dated between 2.6 and 2.5 Ga. The LCT-type pegmatite dike swarm is located within the Granite Mountains of Central Wyoming, USA, comprising part of the Archean-Neoproterozoic supracrustal belt of North America.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drillhole collars, survey and assay data are summarised in Appendix 1 of this announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such 	 Intervals are reported as weighted averages based on interval lengths. No cut-off grades are applied to these exploration results. Lithium assays in ppm are converted to % Li2O grades by multiplying by a factor of 2.153 and then dividing by 10,000 to get to % Li2O. Tantalum assays in ppm are converted to Ta2O5 in ppm by multiplying by a factor of 1.2211. No equivalent values are used or reported.

Criteria	JORC Code explanation	Commentary
Relationship	 aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. These relationships are particularly important in 	 Majority of samples were taken at 0.25-1.5m lengths.
between mineralisation widths and intercept lengths	 the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The pegmatite dikes dip at between 70 and 90 degrees, the azimuth of the drill holes was normal to the pegmatite strike and the inclination of the drill holes varied between 50 and 65 degrees, typically intersecting the dikes at an angle between 45 and 70 degrees. Since most drilling intersections do not represent the true thickness and the estimated true widths range between 40% and 90% of the of the mineralised drill intervals reported in this announcement. The relationship between drilling orientation and mineralisation is considered appropriate and should not introduce any sampling bias.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to the body of the announcement for the appropriate section and plan view maps.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All exploration results applicable to the Black Mountain Project have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or 	 Chariot completed a high-resolution ground magnetics survey at Black Mountain comprising 108 east-west orientated lines, spaced 25 m apart, and each 3.55 km long for a total of 383.4 line-km. Refer to the Prospectus for further details.

Criteria	JORC Code explanation	Commentary
	contaminating substances.	
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Chariot plans to conduct a detailed re-logging of the Phase 1 Program drill core along with a detailed petrographic study of the mineralisation and selection and submittal of samples for initial metallurgical testing. Phase 2 Resource Drilling Program, will be contingent on the results of the Phase 1 drilling and will include a more extensive 5,000 to 10,000m initial resource definition drill program expected to commence in Q3 or Q4 of 2024. In addition, the Company plans to run a preliminary IP/Resistivity survey over the area of anomalous Zn-Pb soil geochemistry to assist in siting several holes to test the nature of this base metal mineralisation.

Section 3 (Estimation and Reporting of Mineral Resources) has been excluded as no Mineral Resources have been estimated for the Black Mountain Project to date.